Интеллектуально - Творческий Потенциал России
Национальная Образовательная Программа
Номинация | Работа | Баллы | Результат |
---|---|---|---|
Основы инженерных наук (рецензия) | Исследование концентрации напряжений в композиционных материалах троякопериодической структуры | лауреат I степени | |
Мнение эксперта: Автор рассматриваемой работы обратил внимание на необычные свойства композиционных материалов, которые «приобретают всё большую популярность во всех видах человеческой деятельности – от строительных материалов до сложнейших деталей машин в авиации и космонавтике». Он совершенно прав в том, что «необходимо расширение и углубление наших знаний в области композитных материалов». Целью своих исследований он выбрал тему «Изучить свойства гранулированного композиционного материала с троякопериодической системой эллипсоидальных включений». В этой связи автор решил задачи: «определил эффективные характеристики композиционного материала трояко периодической структуры; определил коэффициенты концентрации напряжений в окрестностях включений». В работе представлены достаточный обзор проблем, связанных с созданием композитных материалов, изучением их свойств и применения в практике. Изложена «структура наполнителя композиционных материалов, подразделяющихся на: а) волокнистые (армированы волокнами и нитевидными кристаллами); б) слоистые (армированы пленками, пластинками, слоистыми наполнителями); в) дисперсноармированные, или дисперсноупрочненные (с наполнителем в виде тонкодисперсных частиц)». В расчётах объёмного распределения элементов конструкции из композиционного материала применен обобщённый закон Гука в тензорной форме. При этом сделано логически допустимое предположение, что наполнитель и связующее можно рассматривать как единое целое, а связи между деформациями и напряжениями имеют линейные зависимости. В работе изложены соответствующие математические модели связей, напряжений и деформаций. Представлены также и некоторые особые случаи, связанные со структурой материала в виде дискретного волокна и чешуйчатого дисперсного включения. В работе представлены численные и графические результаты исследований. Работа заслуживает оценки Лауреата заочного конкурса и Диплома 1-й степени, выступления с докладом на конференции «Научный потенциал» | |||
Рекомендация к участию: Научный потенциал - очная конференция | |||
Форма участия: доклад |